

Diffraction, ab-inito calculations and elastic constants of the MAX phases Ti₃XC₂, X=Si,Al

V Gray¹, G Kearley², O Kirstein^{1,3,*}, R Kutteh⁴, E H Kisi¹, D. P. Riley⁵ and F. Trouw⁶

¹School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia ²Bragg Institute, Australian Nuclear Science & Technology Organisation, Lucas Heights, NSW 2234,

Australia

³European Spallation Source ESS AB, 22100 Lund, Sweden ⁴School of Physics, University of Sydney, Sydney, NSW 2006, Australia ⁵Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Lucas Heights, NSW 2234, Australia ⁶Lujan Centre, Los Alamos Neutron Science Center, Los Alamos National Laboratory, USA

Accepted for publication on 20th February 2015

M_{n+1}AX_n Phase Ceramics are referred to more commonly as MAX phases where M is an early transition metal, A is a group IIIA or IVA element, and X is C and/or N. These materials possess the desirable properties of metals (good thermal and electrical conduction, machinability, and thermal shock resistance) and ceramics (good resistance to chemical attack, oxidation and creep) [1], leading to potential applications in industries such as energy generation, chemical processing, and medicine [2]. The first comparison of an experimentally measured phonon Density of States (DOS) for Ti₃SiC₂ to DFT lattice dynamics and DFT-MD simulation was presented by Kearley et al. [3]. The inelastic neutron scattering (INS) was measured on TOSCA at the ISIS facility using a sample prepared by self-propagating high-temperature synthesis. Above an energy transfer of 25meV the experimentally observed spectrum more closely resembles the MD augmented simulation. From the DFT-MD simulation it can be concluded that the mismatch between spectra is likely due to anharmonic motion or anharmonic atomic potentials between Si and Ti. To further understand the observed mismatch between calculations and experiments the phonon DOS of both Ti₃SiC₂ and Ti₃AlC₂ were taken covering 0-70meV using the PHAROS spectrometers at LANSCE focusing on the low energy regime of the inelastic spectrum, which is closely related to the acoustic phonons. For Ti_3SiC_2 , measurements were taken at temperatures of 10, 30, 50 and 70K to allow comparison with DFT lattice dynamics (0K) and DFT-MD (30K, 50K and 70K) simulations. By comparing experimental measurements to simulations and DFT-MD simulations, in particular in case of Ti₃SiC₂, the anharmonic motion of Si in case of Ti₃SiC₂, and apparent harmonic motion of Al in case of Ti₃AlC₂, has been identified.

- 1. Barsoum M W 2000 Prog. Solid State Ch. 28 201-281
- Eklund P, Beckers M, Jansson U, Hogberg H and Hultman L 2010 Thin Solid Films 518 1851-1878
- 3. Kearlery G J, Gray V, Riley D P, Kirstein O, Kutteh R, Kisi E 2014 J. Amer. Ceram. Soc. 97 916-922

Keywords: Diffraction; ab-initio; elastic constants; MAX phases