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Abstract - It is well known that the outer orbitals 

of an atom are responsible for their major 

physical and chemical properties. The computed  

energies of the lowest unoccupied atomic orbitals 

[LUAO] and the energies of the highest occupied 

atomic orbitals [HOAO], which were obtained 

using an ab initio molecular orbital program. 

These orbital energies were correlated with the 

properties, both physical and chemical, of the bulk 

materials made from these various atomic systems 

using artificial neural network (ANNs) modeling 

procedures.  This paper will present results of the 

modeling studies of single atoms and small atomic 

clusters for elements beginning with potassium 

through selenium and rubidium through 

tellurium.  This paper will present results that 

show several chemical and physical properties of 

the bulk material properties of materials are 

modeled by our computational procedures. The 

clusters were initially modeled using HyperChem 

5.01 molecular modeling software.  This program 

was used to construct and optimize the various 

atomic clusters.  Spin multiplicity for the lowest 

ground state as determined from term symbols 

were used also for geometry optimizations on 

these atomic clusters. Guassian 03 molecular 

modeling software was then used to perform 

density functional theory (DFT) single point 

energy calculations on the structurally optimized 

atoms.  In the Guassian (03) program, the 

LanL2DZ basis set and the B3PW91 functional 

was used. The LanL2DZ basis set incorporates 

parameters that accounts for the relativistic 

effects of heavier elements.  In addition, materials 

used for the storage of hydrogen gas were also 

modeled and will be discussed in this talk.  

Keywords - molecular orbital modeling, energy 

relavent material’s properties, ab initio molecular 

orbital, Density Functional Theory, Artificial 

Intelligence, Artificial Neural Networks, hydrogen 

storage, Metal-Organic Frameworks. 

  I.  Introduction 

 Artificial Intelligence (AI) is becoming a 

more and more used procedure in many areas of 

science.  In the July 7, 2017 issue of Science, many 

applications of AI are highlighted [1]. For example, 

recent developments in using artificial neural 

networks (a type of artificial intelligence) is used by 

organic chemists to understand and predict the 

outcome of organic chemical reactions [2].  Another 

example is where plant biologist use AI to predict 

protein-protein interactions in order to find out how 

proteins interact [3].   

 An artificial neural network (ANN) is a 

parallel distributed processing system.  In a multi-

layer network, the information is propagated from the 

input layer (experimental data), to the hidden layer, 

to the output layer (parameters to be predicted), in a 

manner that the relationship between input and output 

is generally nonlinear.  This property of a multi-layer 
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network lends itself to efficient interpolation and 

estimation of a set of parameters from experimental 

measurements [4,5]. 

 In a feed forward network, the processing 

elements (PEs) are interconnected through 

unidirectional information channels.  The key to the 

success of developing an artificial neural network to 

model this relationship is to train the network  with as 

many examples as reasonable in order to capture the 

essence of the data.  See Figure 1 for an example of 

the architecture of a typical artificial neural network.   

 

 

Figure 1 Architecture of typical artificial neural network 

 

 Note that the key to the success of an 

artificial neural network is to have as many training 

examples as possible.  An ANN needs to have 

sufficient nodes in the hidden layer to allow for the 

network to make generalizations in correlations 

between the input data and the output data.  If there 

are too many nodes, the network will “memorize” 

rather than generalize [6-8].  This unique property of 

neural networks has been exploited in this work.  

Neural network models are specified fundamentally 

by architectures, transfer functions and learning laws 

[6, 8]. In this work, the trained network of 70 

different organic compounds on which the 

corresponding physical properties of boiling point 

(B.P.), melting point (M.P.), refractive indes (R.I.), 

density (D), and dipole moment (D.M.) were 

provided and then asked our “trained” neural network 

to perdict the molecular weight.  The predicted four 

compounds at a time, that is if one took out four 

compounds from the training set and then trained on 

the remaining 66 coumpounds.  Next the four 

compounds removed were propagated and predicted 

for their molecular weights. This was repeated about 

20 times, always removing four compounds and 

training on the 66 remaining, until all compounds had 

its turn of being removed from training and were 

propagated.  The results of this can be seen in Figure 

2 in the Results section of this manuscript.   

II.  Methods I: Prediction of molecular weights 

 In the training part of this project, a standard 

three layer network architecture as seen in Figure 1.  

The artificial neural network was a typical feed-

forward, back-propagation newwork using software 

developed by NASA [9] but modified by our group 

for our purposes.  Our input layer consisted of five 

nodes, one for each physical property being trained 

on.  Our second layer (hidden layer), consisted of 28 

nodes and our output layer was a single node 

representing molecular weights.  Our network was 

completely interconnected; that is every node was 

connected to every other node (See Figure 1).   
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 One final point needs to be pointed out.  In 

preparing the input data, is is necessary to normalize 

all the physical property values to numbers between 

0.1 and 0.9.  The is necessary because of the transfer 

function, which is a sigmoid activation function that 

is asymptopic between 0.0 and 1.0 [9].  The 

mathamatical form of the equation is 

 

𝒇(𝒙) = 𝟏(𝟏 +e-(x+T))-1    (1) 

 

where T is a simple threshold, x is the input value 

and f(x) is the normalized number.  For 

simplification, the threshold was set to zero.   

Methods II:  Prediction of Metal Hydrides’ 

Hydrogen Storage.   

 Metal hydrides are a class of materials that 

are being researched for its potential for storing 

hydrogen [10-12].  Metal hydrides are a safe fuel-

adsorbing candidate that would keep the hydrogen 

bound to a metal until it is needed to provide fuel 

during vehicle operation [11].  Metal hydrides store 

hydrogen much more compactly than using 

pressurized hydrogen, or liquid hydrogen.  In 

addition, if the container itself were damaged there 

would not be a catastrophic fuel release [13,14]. 

Several hydrides are potential lightweight candidates 

for future materials, especially those with dopants 

[15,16].  Other metals are being investigated for other 

properties that have advantages in solar energy or as 

parts of a fuel cell.  Cyclability and kinetics are 

improved by adding dopants to metal hydrides.  It is 

hoped that a computational method can produce 

several material candidates for hydrogen storage and 

evaluate their viability and efficiency as a metal 

hydride.  This study is focused on several excellent 

metals capable of adsorbing hydrogen.  A well-

studied group was selected from a section of the 

metal hydride database [17].  The properties that 

were focused on are well-established criteria that 

improve the performance of metal hydrides.  The 

range of properties is wide enough for a large 

distribution in the predictability.  The main elements 

of the study use density functional theory (DFT) 

using the Gaussian 03 quantum mechanical software 

[18] and artificial neural network modeling.  Some of 

the bulk properties predicted were melting point, 

boiling point, first ionization energy, dipole moment 

and hydrogen adsorption.  The highest occupied 

molecular orbitals (HOMOs) and lowest unoccupied 

molecular orbitals (LUMOs) were used as inputs for 

the artificial neural network and the bulk physical 

properties were used in the output.   

  III.  Results—Molecular weight predictions 

 Our artificial neural network was trained on 

66 compounds and tested the results of the training 

on four molecules.  The compounds used for training 

and testing along with the five physical properties 

listed in Table I.  The five physical properties are 

boiling point (B.P.), melting point (M.P.), refractive 

indes (R.I.), density (D), and dipole moment (D.M.).  

These properties were found in the 87th addition of 

the CRC Hanbook of Chemistry and Physics [19].  

The molecules used for training and testing purposes 

were varied.  Table 3 of Appendix II shows the 

molecular weithts for the 70 molecules used for 

training and testing purposes.  Performing the 

procedure for testing the accuracy of our artificial 

neural network in predicting the molecular weights of 

the 70 molecules results can be found in Table 2 of 

Appendix I.   

 Four molecules were randomly removed 

from the total of 70 molecule set and trained on the 

remaining 66 molecules.  For example, our first  
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Figure 2 Molecular weight predictions using artificial neural network 

training (Run 1) was performed on molecules 1 

through 14, 16 through 23, 25 through 47, 49 through 

63, and 65 through 70.  The first molecules tested 

were on the training on molecules 15, 24, 48, and 64.  

The percent error ranged from 1.35% to 5.71% with 

an average error in the prediction of the molecular 

weights for Run 1 at 3.21%.  Run 2, the neural 

network was trained on molecules 1 through 12, 14 

through 27, 29 through 55, and 57 through 69.  Next 

there was testing on molecules 13, 28, 56, and 70. In 

this training, the percent error ranged from 0.55% to 

7.00% with an average error in predicting the 

molecular weights of the four tested molecules at 

3.61%.  This procedure was repeated for 26 total 

runs.  In these runs, every molecule was included at 

least once in a testing set.  The overall average error 

for all 26 runs was 3.11%.  When a constructed 

correlation plot of experimental molecular weight vs. 

neural network predicted molecular weights (Figure 

2), an obtained  R2 of 0.9645 was obtained. This is 

consider a very accurate correlation.   

 One point of importance is that numerous 

runs were made in which the elimination of one of 

the physical properties from the training set.  In all 

cases, the network was unable to make accurate 

predictions of the molecular weights. It was found 

that it required all five physical properties in the 

training set in order to get accurate predictions of the 

molecule weights.   

 Another point to be made is that when 

several additional trainings were made with the 

removal of one of the five physical properties and 

substituted with the molecular weight for that 

property with the network was trained on the set on 

the four physical properties remaining, it was  found 

that the network trained to the removed property but 

with much more overall average error.  The average 

error was usually in excess of 20 percent. It is unsure 

why it did not train as well on the physical properties 

when the molecular weight became one of the 

training parameters.   

  IV.  Results—Metal hydride predictions 

 The results of the calculations on various 

metal hydride clusters are shown in Figure 3 and 

summarized in Table 1 [20].  It can be seen that the 

wt. percnet hydrogen gas adsorbed ranged from a 

high of 7.66% to a low of 0.72%.  The correlation 

plot shown in Figure 3 is for a fully cross validated 

training.  That is, each cluster was allowed to be 

excluded from the input data for the neural network, 

where the remaining 10 clusters were in the training 

set.  Each metal hydride cluster had its turn being 

predicted.  When a plot of the neural network 

predicted values for wt. % hydrogen adsorbes vs. 

experimental wt. hydrogen adsorbed, the correlation 

had an R2 value of 0.9569.  This is a very good 

correlation considering the error associated with 

these experimental results.   

R² = 0.9645
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Figure 3 Percent wt. hydrogen adsorbed predictions 

using artificial neural network modeling. 

      

 

Table 1:  Metals and experimental data used in 

Figure 3.  

Metal 
Pressure (atm) 

at 25 °C 

Temperature 

for one 

atmosphere of 

pressure oC 

Weight 

percent 

hydrogen 

Zr 6.4 x 10-28 881 2.16% 

V 2.1 12 3.81% 

Ti 4E-20 643 3.98% 

Pd 0.0082 147 0.72% 

Mg 0.000001 279 7.66% 

TiFe 4.1 -8 1.86% 

Mg2Ni 0.00001 255 3.6% 

ZrNi 0.0000004 292 1.85% 

ZrMn2 0.001 167 1.77% 

ZrCr2 0.0029 166 1.82% 

TiCo 0.004 135 1.45% 

V  Hydrogen adsorption upon the magnesium 

surface  

 
 Until recently, the only pathway for H2 

adsorption onto conventional magnesium thin films 

was the [001] surface.  With the discovery of Mg 

nanoblade/nanotree fabrication, there are now 

multiple surfaces for adsorption.  A keen 

understanding of each surface’s hydrogen adsorption 

kinetics is a key part of deciding if these surfaces 

present a more attractive hydrogen storage material 

than conventional thin films [21].  This study focused 

on the use of ab-initio methods to compare the 

adsorption of H2 molecules onto the [001], [100], and 

[110] surfaces as well as an analysis of hybrid 

functionals and their advantages over traditional 

functionals for minimum energy pathway 

calculations.  Now in building the Mg surfaces 

Gaussview was chosen as the primary method for 

constructing the surfaces.  The surfaces were 

modeled with six layers and a 3x3 Mg surface.  The 

resulting 54 atom structure was allowed to relax with 

a 10 Å vacuum space above the surface.  Of the 

initial six surfaces proposed for study, only four were 

able to be stabilized.  These four surfaces were 

manipulated via Gaussview software as part of the 

Gaussian 03 program, to create the initial state (IS) 

and the final state (FS). For the IS, a H2 molecule was 

placed in the center and 5Å from the surface.  For the 

FS, two H atoms were placed on the surface over the 

hcp and fcc holes.  The [001] Mg IS and FS are 

shown in Figure 4.      
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Figure4.  Initial State (IS) and Final State (FS) 

for H2 and the Mg [001] surface. 

 
 Overall, it was found that the [100] surface 

does appear to have a 20-30% lower energy of 

activation than the [001].  This is significant enough 

to encourage further runs, which could provide more 

accurate and insightful information as to why this is 

the case.  The relationship of the adsorption energies 

of the [100] as compared to the [001] surface is 

difficult to ascertain. Without physisorption, the H2 

adsorption is slowed by the large activation energy 

required to break the H2 bond thus backing the 

experimental literature claims of the high 

temperature, pressures, and times required for H2 

adsorption on pure Mg surfaces.  The effects of the 

surface structure reduced the activation energy (Ea) 

values of the H-Mg adsorption process by 20-30% in 

the case of the [100] surface, while it appeared to 

increase the Ea values in the case of the [110] surface 

by 10% or more. The differences in calculated 

activation and adsorption energy for the [100] and 

[110] surfaces highlight the potential impact that the 

non-close packed Mg planes could have upon the 

adsorption kinetics of H2 [22,23]. However, it is clear 

that without the capability to conduct H2 

physisorption, pure magnesium will never provide 

the kinetics exhibited by Mg surfaces doped with 

transition state metals.  When combined with very 

small dopant percentages, the improved kinetics 

exhibited by the [100] surface could, however, 

provide the small boost necessary for hydrogen to 

rapidly adsorb and desorb from the surface at lower 

temperatures and pressures.   

VI  Summary    

 In summary it was found that an artificial 

neural network could successfully make an 

association between the five bulk physical properties, 

melting point, boiling point, density, refractive index 

and dipole moment with the molecular weight of the 

various organic molecules.  It was also noted that it 

was not able to make this correlationwhen one or 

more of these properties was eliminated from the 

training set.  This seems to imply that there is a 

functional relaton between all of these physical 

propertiesand molecular weight. It is also believed 

that there is probably hidden within these properties 

geometrical information about these molecules.  

Future studies whould be able to shed light on this 

possibility. 

 There is also the possibility of analyzing the 

weight space of the network wi,j and wj,k, (see Figure 

1).  It is hypothesized that there probably exist a 

mathamatical relationship between the five physical 

properties and the molecular weights.  If there were 

the ability to find such a relationship, one could solve 

for any of these properties or solve for the molecular 

weight as long as all of the properties and molecular 

weights are known for a particular molecule.   

 For additional information on artificial 

neural networks and the theory of neural networks, 

see references 24-30 and references therein [24-30]. 

 This research also shows that non-close 

packed planes present a legitimate case for further 

research, either as pure magnesium surfaces or with 

very low dopant levels, towards the goal of 

discovering a plausible solution to the DOE hydrogen 

storage challenge. For additional information on Mg 

surface studies and its use in hydrogen storage, see 

references 21 to 23 and references within [21-23].   
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Appendix I 
Table 2. Organic compounds and their five physical properties: melting point (M.P.),  

boiling point (B.P.), density (D), refractive index (R.I.) and dipole moment (D.M.). 

No. Compound Name M.P.  oC B.P.  
oC 

D  g/cc R.I. D.M.  

debyes 

1. Dichlorofluoro methane -135.0 9.0 1.405 1.3724 1.29 

2. Dibromo methane -52.55 97.0 2.4970 1.5420 1.43 

3. Nitro methane -28.50 100.8 1.1371 1.3817 3.46 

4. Pentachloro ethylene -29.00 162.0 1.6796 1.5025 0.92 

5. Chloro ethylene -153.8 -13.4 0.9106 1.3700 1.45 

6. Ethanal -121.0 20.80 0.78 1.3316 2.69 

7. Chloro ethane -136.4 12.27 0.8978 1.3576 2.05 

8. Fluoro ehtane -143.2 -37.7 0.0022 1.2656 1.94 

9. Iodo ethane -108.0 72.30 1.9358 1.5133 1.91 

10. Acetylamine 82.30 221.2 0.99 1.4278 3.76 

11. Dimethyl sulphoxide 18.45 189.0 1.1014 1.4770 3.96 

12. Dimethyl amine -93.00 7.40 0.680 1.3500 1.03 

13. Propyne -101.5 -23.2 0.70 1.386 0.78 

14. 2-chloro propene -137.4 22.65 0.9017 1.3973 1.66 

15. Propene -185.2 -47.4 0.5193 1.357 0.37 

16. 2,2-dichloropropane -33.80 69.30 1.1120 1.4148 2.27 

17. 1-propanol -126.5 97.40 0.8035 1.3850 1.68 

18. Trimethyl amine -117.2 2.87 0.671 1.3631 0.61 

19. Furan -85.65 31.36 0.9514 1.4214 0.66 

20. Thiophene -38.25 84.16 1.0649 1.5289 0.55 

21. 1,2 butadiene -136.2 10.85 0.676 1.421 0.40 

22. Butanal -99.00 75.70 0.8170 1.3843 2.72 

23. Cyclopentene -135.1 44.24 0.7720 1.4225 0.20 

24. Pyridine -42.00 115.5 0.9819 1.5095 2.19 

25. Bromobenzene -30.82 156.0 1.4950 1.5597 1.70 

26. Nitrobenzene 5.7 210.8 1.2037 1.5562 4.22 

27. Phenol 43.0 70.86 1.0576 1.5418 1.45 

28. p-chloro toulene 7.5 162.0 1.0697 1.5150 2.21 

29. Toulene -95.0 110.6 0.8669 1.4961 0.36 

30. o-xylene --25.18 144.4 0.8802 1.5055 0.62 

31. Dibutyl ether -95.30 142.0 0.7689 1.3992 1.17 

32. Quinoline -15.60 238.1 1.0929 1.6268 2.29 

33. Isoquinoline 26.50 243.3 1.0986 1.6148 2.73 

34. Phenylbenzene 71.00 255.9 0.8660 1.5880 0.00 

35. Tribromo methane 8.30 149.5 2.8899 1.5976 0.99 

36. Iodo methane -66.45 42.40 2.2790 1.5382 1.62 

37. Ethanethiol -144.4 35.00 0.8391 1.4310 1.58 
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38. Propanone -95.35 56.20 0.7899 1.3588 2.88 

39. Butane -138.4 -0.50 0.601 1.354 < 0.05 

40. Dipropyl ether -122.0 91.00 0.7360 1.3809 1.21 

41. Fluoro methane -141.8 -78.4 0.80 1.1727 1.85 

42. 1,1-dichloro ethane -16.98 57.28 1.1757 1.4164 2.06 

43. 1,1-difluroethane -117.0 -24.7 0.9500 1.3010 2.07 

44. 2-propanol -89.50 82.40 0.7855 1.3776 1.66 

45. 1-nitropropane -108.0 130.5 1.01 1.4016 3.66 

46. 2-chloropropane -117.2 35.74 0.8617 1.3777 2.17 

47. Aniline -6.30 184.1 1.0217 1.5863 1.53 

48. Butanal -99.0 75.7 0.8170 1.3843 2.72 

49. m-dichloro-benzene -24.7 173.0 1.2884 1.5459 1.72 

50. m-fluoro-toulene -87.7 116.0 0.9986 1.4691 1.86 

51. Ethane -183.3 -88.6 0.5720 1.0377 0.00 

52. Propadiene -136.0 -34.5 1.7870 1.4168 0.00 

53. Propene -185.3 -47.4 0.5193 1.357 0.37 

54. Acetylene -80.8 -84.0 0.60 1.0005 0.00 

55. 2-chloro-ethanol -67.5 128.0 1.2002 1.4419 1.78 

56. 1,3 chclohexadiene -89.0 80.50 0.8405 1.4755 0.44 

57. 1-Hexyne -131.9 71.30 0.7155 1.3989 0.83 

58. 1,4-dichloro-butane -37.3 153.9 1.1408 1.4542 2.22 

59. Ethanoic acid 16.6 117.9 1.0492 1.3716 1.74 

60. 1,3-dichloro propane -99.5 120.4 1.1878 1.4487 2.1 

61. 2-chloro-2-methyl propane -25.40 52.0 0.8420 1.3857 2.13 

62. m-chloro-nitro benzene 24.0 235.0 1.34 1.5374 3.73 

63. p-chloro-nitro benzene 83.6 242.0 1.3 1.538 2.83 

64. 1,3-cyclopentadiene -97.2 40.00 0.8021 1.4440 0.42 

65. 1,3-butadiene -108.91 -4.41 0.6211 1.429 0.00 

66. 4-chloro-phenol 43.20 219.8 1.27 1.5579 2.11 

67 1,3-cyclohexadiene -89.0 80.5 0.8405 1.4755 0.44 

68. Phenyl-methanol -15.3 205.3 1.0419 1.5372 3.02 

69. Acetophenone 20.5 202.0 1.0281 1.5372 3.02 

70. p-fluoro-nitrobenzene 27.0 206.0 1.3300 1.5316 2.87 
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Appendix II 

Table 3. Molecular weights of molecules with 

physical properties given in Table I. 

 

No. Compound Name Molecular 

Weight 

(AMU) 

1. Dichlorofluoro methane 102.92 

2. Dibromo methane 173.85 

3. Nitro methane 61.04 

4. Pentachloro ethylene 202.30 

5. Chloro ethylene 62.5 

6. Ethanal 44.05 

7. Chloro ethane 64.52 

8. Fluoro ehtane 48.06 

9. Iodo ethane 155.97 

10. Acetylamine  59.07 

11. Dimethyl sulphoxide 78.13 

12. Dimethyl amine 45.09 

13. Propyne 40.07 

14. 2-chloro propene 76.53 

15. Propene 42.08 

16. 2,2-dichloropropane 112.99 

17. 1-propanol 60.11 

18. Trimethyl amine 59.11 

19. Furan 68.08 

20. Thiophene 84.14 

21. 1,2 butadiene 54.09 

22. Butanal 72.12 

23. Cyclopentene 68.13 

24. Pyridine 79.10 

25. Bromobenzene 157.02 

26. Nitrobenzene 123.11 

27. Phenol 94.11 

28. p-chloro toulene 126.59 

29. Toulene 92.15 

30. o-xylene 106.17 

31. Dibutyl ether 130.23 

32. Quinoline 129.16 

33. Isoquinoline 129.16 

34. Phenylbenzene 154.21 

Q Tribromo methane 252.75 

36. Iodo methane 141.94 

37. Ethanethiol 62.13 

38. Propanone 58.08 

39. Butane 58.13 

40. Dipropyl ether 102.18 

41. Fluoro methane 34.03 

42. 1,1-dichloro ethane 98.96 

43. 1,1-difluroethane 66.05 

44. 2-propanol 60.11 

45. 1-nitropropane 89.09 

46. 2-chloropropane 78.54 

47. Aniline 93.13 

48. Butanal 72.12 

49. m-dichloro-benzene 147.01 

50. m-fluoro-toulene 110.13 

51. Ethane 30.07 

52. Propadiene 40.07 

53. Propene 42.08 

54. Acetylene 26.04 

55. 2-chloro-ethanol 80.52 

56. 1,3 chclohexadiene 80.14 

57. 1-Hexyne 82.15 

58. 1,4-dichloro-butane 127.03 

59. Ethanoic acid 60.05 

60. 1,3-dichloro propane 112.99 

61. 2-chloro-2-methyl 

propane 

92.57 

62. m-chloro-nitro benzene 157.56 

63. p-chloro-nitro benzene 157.56 

64. 1,3-cyclopentadiene 66.10 

65. 1,3-butadiene 54.09 

66. 4-chloro-phenol 128.56 

67 1,3-cyclohexadiene 80.14 

68. Phenyl-methanol 108.15 

69. Acetophenone 120.16 

70. p-fluoro-nitrobenzene 141.10 

 

  


