Law of inertia and the primal energy in the cellular automaton universe

元胞自动机宇宙内的惯性定律和原始能源

Simon Berkovich

Department of Computer Science, The George Washington University, Washington, DC 20052, USA
berkov@gwu.edu

Accepted for publication on 20th October 2015

Abstract - In the Cellular Automaton Universe material objects acquire the property of inertia automatically as relocating formations driven by the underlying clocking mechanism. In this way, the core effect of inertia reveals the hidden source of all motions in the physical world. The corresponding energy can be extracted by a process of recurring transformations of material configurations producing a sort of parametric amplification.

Keywords - Law of inertia, Parametric Amplification, Cellular Automaton Universe, Clean energy

I. INTRODUCTION

The world faces crisis of global sustainability with complicated challenges on a scale never before seen in human history. Those include various threats to ecology, dearth of resources - primarily, energy, and serious biomedicine problems. Unfortunately, the worldview of contemporary science does not provide sufficient means to confront these urgent existential challenges for the humanity. The tremendous achievements in modern life are the results of advancements in technology rather than a breakthrough in science. Technology can thrive on incorrect science; and even more, it can provide inspirations to new theories. Thus, the Industrial Revolution was formed by the invention of the steam engine considering heat as a caloric liquid before the discoveries of thermodynamics and the kinetic theory of matter. As Lord Kelvin said, "The steam engine has given more to science than science has given to the steam engine". Nowadays, we witness all-encompassing Information Revolution, which allows to effectively portray the organization of the physical Universe and the Life on Earth as a technological marvel of the “Internet of Things” arising in the framework of a Cellular Automaton model [1] Beyond the “Big Data” environment for information control as described in [2], this contraption may provide an abundant supply of energy needed for actuation (see [3,4]). The energy agitating the physical Universes comes ultimately from the clocking activities of the underlying Cellular Automaton infrastructure. In our current view, these clocking activities reveal themselves at the physical level not directly, but through the property of inertia. In this paper, we will discuss how the extraction of clean and abundant energy from the workings of the inertia in the Cellular Automaton Universe could be effectually organized.

II. THE CELLULAR AUTOMATON MODEL OF THE UNIVERSE

2.1. THE ULTIMATE DRIVE OF THE MATERIAL PROCESSES

"It is important to realize that in physics today, we have no knowledge of what energy is" [5]. In our understanding, energy is the ability to move matter. Energy appears in different forms in physical chemical, and biological processes, and is evaluated by the effects it has on matter. The conservation law states: energy cannot come from nowhere, nor disappear into nothingness; the total amount of energy in co-measurable terms remains constant. A sarcastic depiction of this law: “Energy is never created nor destroyed, it simply goes from one formula to another” presents an ironic truth.

Traditional physics takes the property of inertia for granted, i.e. it does not consider that realization of uniform motion is associated with a continuous consumption of energy. Actually, the uniform motion of the material formations in the Cellular Automaton Universe appears free if one neglects the impetuses
of the Cellular Automaton clocking. However, in the
general balance of the law of conservation of energy, these
impetuses have to be taken into account with some
respective conversion coefficients, similarly to Joule’s
balancing of heat with mechanical energy. In other words,
the hidden driving force of the Cellular Automaton
mechanism goes on par with all other forms of energy.
Moreover, it is the fundamental cause of all motions, and
thus, the innermost source of all energy in the Universe.

In fact, motion without an enduring motive power seems
perplexing. Thus, Aristotle believed that objects are moved
only as they were pushed, and any given motion is reduced
to a certain Prime Mover. A notorious problem for this
point of view was why arrows shot from a bow continued
to fly. A concrete explanation for the flying arrow problem
was proposed, assuming; for example, that the arrow
creates behind it a vacuum, into which air rushed and
applied a force to the back of the arrow. Nowadays, a
similar explanation is considered for the paradoxical
NASA Warp drive effect [6,7] employing hypothetical
pushing from the curved space time and quantum vacuum,
as proposed by M. Alcubierre. [8].

Recent NASA experiments have allegedly demonstrated a
new propulsion technology; it requires no propellant and
by electromagnetic radiation in a resonant cavity generates
a small amount of thrust that is not attributable to any
classical electromagnetic phenomenon. Thrust that was
produced was apparently just above the margin of error,
anywhere between 50 and 70 micronewtons, with a
reported error bar between 15 and 30 micronewtons. The
effect is incredible, like a famous adventure of Baron
Münchausen who pulls himself out of a mire by his own
hair, since it violates the principle of momentum
conservation stating that the total linear momentum of an
isolated system remains constant regardless of changes
within the system. This follows from Newton’s second and
third laws.

What requires some revision is Newton’s first law, the
“Law of inertia”, stating that every object will remain at
rest or in uniform motion in a straight line unless an
external force is applied to it. According to scrupulous
Poincaré analysis, the notion of inertia is neither an a priori
truth nor an experimental fact; it is rather a supposition that
“the movements of all material molecules of the universe
depend on the differential equations of the second order”[9].
Also, a crucial support for our Cellular Automaton approach gives Maxwell’s consideration that:
the law of inertia, would be without meaning, unless we
admit the possibility of defining absolute rest and absolute
velocity [10].

2.2 THE CONCEPT OF CELLULAR AUTOMATON ETHER INFRASTRUCTURE (CAETERIS)

A cellular automaton is a grid of nodes whose states are
transformed in discrete steps depending on the states of the
surrounding neighbors. The idea of representing the physical
world with cellular automata was conceived by K. Zuse and E.
Fredkin (see [11, 12] Potentials of the cellular automata for
the representation of the physical world are best envisioned with the
well-known Conway’s “Game of Life”, where certain “patterns”
present stable relocating configurations. Thus, it is tempting to
find a Rule producing a collection of stable relocating
configurations, which could be identified with the elementary
constituents of matter. The cellular automaton model for the
physical Universe is a high-tech resurrection of the classical
concept of ether where motion of the material formations is
performed by reconfigurations over the medium rather than by
passing through it. Notably, such a construction avoids
confrontation with the postulate of relativity and induces the
property of inertia.

Realization of the cellular automaton model of the Universe
involves two major concerns. First: trying to find a cellular
automaton Rule that can produce the complex behavior of
physical objects seems impossible. Second: it is not clear
whether local transformations can account for the apparent non-
locality of the Universe. Indeed, to rely on brute force search for
the Rule is hopeless. But starting with the firm design
requirements rather than guessing upon the desired outputs one
immediately recognizes the necessity for a distributed
mechanism of clocks synchronization, which has to be robust
and fault-tolerant.

The indispensable design requirement for such synchronization
removes any arbitrariness in the choice of the primitive Rule.
The cellular automaton mechanism of Nature must contain a
grid of mutually synchronizing circular counters; the system is
characterized by a distribution of the phases \(\theta (0 < \theta < 2\pi)\)
defining the states of the counters. Astoundingly, but this
approach solves the problem: It turns out that the whole richness
of the physical world condenses in a plain sentence: “All
physical phenomena are different aspects of the high-level
description of distributed processes of mutual synchronization in
a network of digital clocks” [13]. The developed model was
named CAETERIS (Cellular Automaton EThER InfraStructure).

Workings of this model have been presented in several
publications starting [14], in many various aspects they are
described in [15-19]. For the purpose of our paper, we will
concentrate here mostly on the synchro activities of the model
producing basic material formations (Fig.1)
Berkovich (2015) Law of inertia and the primal energy in the cellular automaton universe

The given equation of synchronization includes a non-linearity factor - a restriction from below on the spatial derivative determined by the realization of fault-tolerance. The collection of helicoidal traveling wave solutions exactly correspond to the spectrum of the stable elementary particles of matter (Fig. 2.)

Both fundamental solutions of increasing exponent, for the proton: \(\exp(b/v)\cdot s \) and decreasing exponent; for the electron: \(\exp(-(v/D)\cdot s) \): depend on the velocity \(v \) in the same way. Namely with the increase of \(v \), both functions along the generatrix - \(s \) become smaller; this implies that protons and electrons reactions to the presumed manipulations for energy extractions will be coordinated.

As to the neutron (Fig. 3), it is a composite semi-stable particle with half-life of about 15 min. The generatrix function of the neutron presents a linear combination of the indicated fundamental exponential solutions for the electron and the proton connected with a sinusoidal segment of neutrino. These components are weakly hold jointly at generatrix. The neutron together with other less stable composite particles is presented in Fig. 3.

The neutron decays as its generatrix splits into joined components: \(n = p^- + e^- + \nu \). Neutron is a proton trailed by neutrino and electron, it has a greater mass than proton. In a similar way can be described the radioactive decays by weak interactions of less stable particles - muons and taons. Muon is an electron trailed by neutrino, it has properties similar to those of electrons, but its mass is much greater; taon is an electron trailed by neutrino and proton, it has higher instability and some hadronic features due to the influence of a rear increasing exponent.

The helicoidal synchro formations of the CAETERIS model actually exhibit the basic properties of the fundamental physical phenomena. Besides the discussed law of inertia those include: an upper bound on the propagation speed – the speed of light, antimatter as dual solutions having an opposite sense of rotation, slight asymmetry between matter and antimatter - the enigmatic prevalence of matter, which arises from the necessity for an arbitration protocol, and much more.

Besides traveling wave helicoidal “synchro formations” creating the basic componentry of the material world the CAETERIS model includes an operational background of very fast spreading diffusional solutions. The origin of these solutions is associated with the paradox of instantaneous impact in parabolic equations. This paradox shows that representation of spreading diffusion by
parabolic equations is a mathematical idealization, behind which there should be some very fast propagating wave mechanism. The pop-up instantaneous impact produces gravitation with amplification in cosmological scale [20]. This could resolve the conundrum of dark matter, see article [21], worrying “How long can we keep on looking for dark matter?”

The opinion that “the action-at-the-distance” is inadmissible from the philosophical standpoint is flawed. There is absolutely nothing outlandish in having a system with two types of processes developing in substantially different time scales. In fact, it is a typical situation for relatively slow material systems under drastically faster information control. The appearing effects of “nonlocality” are decisively involved in the organization of the Holographic Universe. This holographic mechanism reveals itself in the strangeness of quantum mechanics behavior, and in the intricacy of biological information processing [2,17].

2.3 EXTRACTING “INERTIA” ENERGY FROM CELLULAR AUTOMATON ACTIVITIES

As long as Cellular Automaton mechanism produces freely propagating material formations as exemplified in Fig. 1 and 2 no deviations from the law of inertia, and hence no manifestation of force, appears at the level of the physical world. Therefore, to enjoy the Cellular Automaton energy it is necessary to diverge material formations from the indicated traveling wave conditions. In a simplest way this can be achieved by deflecting the axis of a helicoidal kernel from the propagation direction. (Fig. 4)

![Fig. 4](image)

Fig.4. Extracting “inertia” energy by distortions of canonical formations for uniform motion: from slight deflections of a given direction to major disarrangements in atomic fission

To reinstate canonical solutions the cellular automaton mechanism has to employ supplementary activities. At the level of the physical world reinstallations of a distorted material object to a required pattern appear as a result of an action of a force, i.e. as utilization of some energy. Presumably, the observed NASA Warp Drive effect could occur in such circumstances as soon as the utilized electromagnetic radiation scatters atoms directions. Cellular Automaton transformations turning them back to a proper way would be felt as a small thrust. Similarly, independent material bodies due to random atomic fluctuations may also experience some miniscule spontaneous pushes questioning the exactness of the law of inertia.

For a massive extraction of the primal Cellular Automaton energy the applied transformations of matter have to be radical. The Fig.4 illustration presents a palpable example of the atomic energy when the transformations of the involved matter are substantial: one big nucleus fissions into many different fragments - two smaller nuclei and additional particles to maintain the process. Thus, to return these deeply disfigured fragments to canonical Cellular Automaton matter would take a lot of efforts resulting in the release of vast energy. In case of extremely violent particle collisions the created debris may not always be reconfigurable back to viable material formations, and such situation may show up a defiance to basic conservation principles.

An intermediate situation presents the unusual “excess heat” effect associated with the mechanism of Low Energy Nuclear Reactions (LENR). This widely considered mechanism raises a number of concerns since it confronts the established body of knowledge in nuclear physics. In our view; LENR devices get their energy from the Cellular Automaton inertia through relatively milder material reconstructions. These reconstructions may just involve splitting the generatrix function; as shown in Fig.3; this is associated with radioactive decays due to weak interactions. According to our interpretation, of the “excess heat” effect, its outputs are sensitive to the direction of inertial propagation, i.e. to the changes of the absolute positioning of the apparatus. This circumstance can be used to withstand the serious problem of LENR instability.

III. CONCLUSION

Apart from the exotic idea of the Cellular Automata, the presented interpretation of inertia leads to a new conceptual scheme for the interpretation of classical mechanics. Material objects are uniformly propagating formations whose relative interactions are described with respect to the frame of reference where the motion by inertia occurs. In the Cellular Automaton Universe, the hidden energy of inertia comes out as a real physical energy when canonical cellular automaton formations of material objects are disrupted. The clocking efforts trying to return the distorted material formations to a canonical form are perceived as a force applied to the material object. According to considered Poincaré deliberations upon inertia [9], such a process should be described by second order differential equations elucidating Newton’s Second Law of Motion:: $F = m\cdot(a = \frac{d^2x}{dt^2}) = m\cdot a$, along with the additive characterization of
the mass expounding its seemingly careless ‘circular’

definition as a product of density by volume. In a non-
inertial frame of reference the cellular automaton
compulsion to uniform motion may be interpreted as a
“fictitious” force, like in Coriolis effect. In our
interpretation, the Foucault pendulum extracts its rotational
energy from the Cellular Automaton mechanism, not from
the impacts of the Earth, as becomes apparent in the
idealized case of a frictionless pivot. Variations of atom
alignments in macromolecule structures can be used to
accumulate the Cellular Automaton energy in the form of
chemical energy for muscles operations.

Consideration of the Cellular Automaton mechanical
implications can be extended to electromagnetism. It is a
well-recognized physical fact that energy from an electric
power station to a customer is not transferred through
electric lines, but rather enters the customer wires from
outside according to the Poynting vector of the
electromagnetic field. The absolute orientation of the wire
with respect to the Cellular Automaton propagation may
affect the electrical resistivity. This may produce an
anisotropy in the exploding wires phenomenon. In stationary
situations the suspected anisotropy in electrical wires may
be revealed if a miniscule heating from inertia energy
could cause a noticeable impact on the resistivity, e.g. for
high purity superconductors in the intermediate state. Thus,
in [22] there was observed a hysteresis bump on a
transition from normal to superconductive state, so for a
different orientation of the sample attracting to it less heat
energy from the inertia relocations, this bump may be
diminished.

This inertia energy is readily available everywhere on
Earth. The presented theory elucidates many paradoxical
situations in Nature when a source of operational energy is
difficult to identify (see [4]), in particular, for biology
(motility), meteorology (turbulence), and geophysics (ball
lightning). Besides its academic significance, the given
theory is of obvious practical value for all energy
production technologies, primarily for the explanation of
LENR, specifically addressing its complication with
instability.

REFERENCES

[1] Simon Berkovich, “Physical world as an Internet of
Things”, COM.Geo’11, Proceedings of the 2nd
International Conference on Computing for
Geospatial Research and Application, Article No. 66,

[2] Simon Berkovich “Formation of Artificial and
Natural Intelligence in Big Data Environment”,
Springer, Network Science and Cybersecurity,
189-203, 2014.

applying parametric resonance to quantum nonlocality

[4] Sustainability Problems and a Novelty in the Concept of
Energy”, Springer, Network Science and Cybersecurity,

Downplays 'Impossible' EM Drive Space Engine
http://www.space.com/contact_author.php?u=Uld4cGVtR
mlaWFJvSUVodmQvNnNiKQ3BqYiU1MF1XJzJLaFxWld
4cGVtRmlaWFJvYUc5M1pXeHNMbU5o

[7] Brady, David, White, Harold G. March, Paul, Lawrence,
James T, Davies, Frank J., “Anomalous Thrust
Production from an RF Test Device Measured on a
Low-Thrust Torsion Pendulum”
http://ntrs.nasa.gov/search.jsp?R=20140006052

[8] Alcubierre drive, Wikipedia,
https://en.wikipedia.org/wiki/Alcubierre_drive

Journal of Theoretical Physics, 21, Nos. 6/7, pp. 589-600,
1982.

[12] David L. Chandler, “In the beginning was the Rule”, New

Digital Clocks as the Key Cellular Automaton Mechanism
of Nature. Computational Model of Fundamental Physics”,

phenomena of fundamental physics”, Proceedings of the 19th
Annual Pittsburgh Conference on Modeling and

[16] S.Y. Berkovich, “Cellular Automaton as a Model of
Reality: Search for New Representations of Physical and
Informational Processes”, Moscow University Press,
Moscow, Russia,1993 (translated into Russian);
http://www.chronos.msu.ru/old/RREPORTS/berkovich_avt
omaty.pdf

Approach to Fundamental Science”, University

Cellular Automaton Framework”, GWU, Master thesis,
May 2012,
http://pqdtopen.proquest.com/#abstract?dispub=1510409

DNA, or The phenomenon of Life in the physical
