

The essential physics of supercapacitors and electroactuators at the nanoscale: electricity vs mechanics

A. A. Kornyshev

Department of Chemistry, Imperial College London, London, SW7 2AZ, UK

Accepted for publication on 21st July 2015

This lecture will discuss the science behind one of the hot and rapidly developing areas of energy harvesting and storage: electrolytic supercapacitors and electroactuators using ionic liquids as electrolytes*. It will focus on the following points.

1. Charge storage equilibria: from flat interfaces to nanoscale pores:

a) Electrical double layer and electrical capacitance at flat electrodes with ionic liquids.

b) Water as a 'poison'; electrosorption of water.

c) Renormalized interionic interactions in nanoconfinement: the superionic state in a nanopore.

d) Approximate and exactly solvable models of charge storage: the capacitance of single cylindrical and slit pores as a function of voltage and the size of the pore; calculating the stored energy.

e) The effect of pore size distribution and complexity of the pore space.

2. Charging dynamics and the laws of ion transport in nanoconfinement: theory versus simulations:

a) Charging of quasi single file pores.

b) Charging of slit pores. Cyclic voltammetry.

3. The energy-to-power trade-off: new optimization scenarios, and nano-engineering of electrodes. The "pressing-a-spring" concept and ionophobic pores.

4. Leading-to-degradation: the unwanted 'electroactuation' of supercapacitors (some first experiments and theories)

5. Electricity vs mechanics vs electricity: the 'wanted' electroactuation of a capacitor with bendable plates and single-mobile ion-carrier membranes:

a) Equilibrium laws and the 'electroactuation number'.

b) Electroactuation dynamics.

* References to pertinent literature will be presented during the lecture and would be available upon request.

Keywords: Nanoporous electrodes, supercapacitors, charging dynamics, stored energy, electrostatics, ionic liquids, electroactuation