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Abstract - Increasing global energy requirements and the 

emergence of renewable energy involve some efficient Smart 

Grids deployment in order to prevent disturbances that may 

occur on electrical grid. In recent years, to enhance the stability 

and the sustainability of power systems, a great deal of attention 

has been paid to nonlinear power controllers. Indeed, they could 

be used to maintain steady voltage and frequency under normal 

and dysfunctional operations. Among various nonlinear 

controllers, we have chosen in this paper to design a controller 

based on the backstepping method, which can apply to our 

dynamical system. These advantages of this procedure are the 

smoothness and robustness with respect to external 

disturbances. It will be applied to a tidal stream system 

connected to a high - power electrical network called infinite 

bus. Dynamics of angular speed, active power and terminal 

voltage of our system without controller have been compared to 

those obtained with a nonlinear backstepping controller and 

with a classical linear controller named AVR-PSS (Automatic 

Voltage Regulator - Power System Stabilizer). Simulations on a 

single machine connected to an infinite bus power system will 

prove that our backstepping controller achieves the convergence 

of the system states. Robustness is demonstrated in transient 

and permanent behaviours when occur a mechanical 

perturbation and short-circuit on the transmission line. 

Furthermore, the effectiveness of the proposed controller 

compared to classical controller allows overcome the stall 

phenomena of synchronous generators directly connected to a 

high power grid.  

Keywords - High Power Network, Backstepping Control, Power 

Systems Stability, Robustness  

I. INTRODUCTION 

Nowadays, robust nonlinear control strategies 

development is an important challenge to ensure the stability 

of interconnected generators to high power grids. Indeed, the 

emergence of renewable terrestrial and tidal current energies 

[1] leads us progressively to a reversible network in terms of 

production and consumption. Hence it is necessary to develop 

resilient Smart Grids capable of self-regulation in the event of 

long or short power failures. As a result our research area 

requires transversal skills such as mathematical modelling of 

complex nonlinear systems, electrical and control 

engineering. The direct high-power grid connection requires 

a permanent regulation of terminal voltage and frequency 

with a quick rejection of mechanical or electrical 

disturbances. In this context, the controller design must take 

into account the inherent nonlinear properties of synchronous 

generators. So far the linearized Heffron-Philips model of a 

Single Machine Connected to an Infinite Bus (SMIB) 

associated with an AVR-PSS had been improved and shown 

their efficiency only around operating points [2]. But, in 

effect, this control strategy could disconnect synchronous 

generator the power grid under severe disturbances. Until 

now few implementations of nonlinear controllers have been 

done on benchmarks. For this reason, our team has 

developed, simulated and implemented robust nonlinear 

controllers [3, 4, 5].  

In this paper a nonlinear controller will be designed by a 

backstepping method.  Next, the robustness of this controller 

was improved under disturbances such as short-circuit and 
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permanent turbine mechanical power drop - Fig. 1. 

The paper is organised as follows: in Section II, we used 

third order dynamic model of SMIB elaborated in [6]. The 

advantage of this nonlinear state representation is that two 

state variables, relative angular speed of the generator (𝜔) 

and active power of the generator (𝑃𝑒), are directly 

measurable. The power angle (𝛿) is obtained by integrating 

relative angular speed. The terminal voltage (𝑉𝑡) of the 

synchronous generator is measurable and could be obtain by 

an algebraic equation. Our nonlinear system is already in a 

strict-feedback form, which allows design the backstepping 

control in Section IV. This method will achieve our control 

objectives summarized in Section III. We will check by 

simulations in section V our backstepping control law and 

compare this one with AVR-PSS controller.  

 

Fig 1, Tidal stream generator and his nonlinear controller 

connected to a high power grid 

 

II. PROBLEM FORMULATION 

2.1. ASSUMPTIONS 

These following assumptions are based on the fact that 

tidal phenomena are predictable. 

 The velocity of the tidal current is considered as a 

constant. 

 The turbine mechanical power, 𝑃𝑚, evolves as a fast 

response first order system. Its steady state value is 0.8 pu.  

 It is assumed that all system parameters are known. 

2.2. SYNCHRONOUS GENERATOR DYNAMICS MODEL 

    Our nonlinear system is of the general form 𝑥̇ = 𝑓(𝑥, 𝑢). 

𝑥𝑇 = [𝛿 𝜔 𝑃𝑒] is the vector of state variables and 𝑢 = 𝐸𝑓𝑑  is 

the command. Our nonlinear system comes from 

formulations written in [8, 9]. 

{

𝑥1̇ = 𝑥2 + 5454545454000000000545454554444
𝑥̇2 = 𝛼2. 𝑥2 + 𝛾2 + 𝛽2. 𝑥3 + 555555555555555555

𝑥̇3 = 𝑥2𝑥3. cot 𝑥1 + 𝛼3𝑥2 sin2 𝑥1 + 𝛾3𝑥3 + 𝛽3 sin 𝑥1𝑢
     (1)                   

with: 

𝑥1 = 𝛿           𝑥2 = 𝜔 = 𝜔𝑔 − 𝜔𝑠                          𝑥3 = 𝑃𝑒 

𝛼2 = −
𝐷

𝑀
                𝛽2 = −

𝜔𝑠

𝑀
                      𝛾2 = −𝛽2. 𝑃𝑚 

𝛼3 =
𝑥𝑑−𝑥′

𝑑

𝑥𝑑𝑠.𝑥′
𝑑𝑠

𝑉𝑠
2     𝛾3 = −

1

𝑇′
𝑑𝑜

.
𝑥𝑑𝑠

𝑥′
𝑑𝑠

            𝛽3 = −
1

𝑇′
𝑑𝑜

.
𝑉𝑠

𝑥′
𝑑𝑠

   

𝑀 = 2. 𝐻                𝑥𝑑𝑠 = 𝑥𝑑 + 𝑥𝑠                𝑥′
𝑑𝑠 = 𝑥′

𝑑 + 𝑥𝑠 

System parameters are defined in Table 1. 

TABLE 1, SYSTEM-GRID PARAMETERS 

Designation Symbol Value Unit 

Root mean square high power voltage 𝑉𝑠 1 pu 

Mechanical power turbine 𝑃𝑚 0.8 pu 

Transmission line parameters + voltage transformer 

Voltage transformer reactance 𝑥𝑇 0 pu 

Transmission line reactance 𝑥𝐿 0.294 pu 

Broken Transmission line reactance 𝑥𝑠 𝑥𝑇 +
1

2
𝑥𝐿 pu 

Synchronous generator parameters 

Synchronous angular speed 𝜔𝑠 1 pu 

Rotor angular speed 𝜔𝑔 − pu 

Damping constant D 0.1 pu 

Inertia constant H 0.576 sec. 

Synchronous direct axis reactance 𝑥𝑑 0.894 pu 

Synchronous direct axis transient reactance 𝑥′
𝑑 0.64 pu 

Direct axis transient open-circuit time constant 𝑇′
𝑑𝑜 0.44 sec. 

 

Let’s write the previous system in strict–feedback form: 

{

𝑥1̇ = 𝜑1(𝑥1) + 𝜓1(𝑥1)𝑥2 + 545000545454554444
𝑥̇2 = 𝜑2(𝑥1, 𝑥2) + 𝜓2(𝑥1, 𝑥2)𝑥3 + 5555555555555

𝑥̇3 = 𝜑3(𝑥1, 𝑥2, 𝑥3) + 𝜓3(𝑥1, 𝑥2, 𝑥3)𝑢 + 000000000
      (2) 

In our case, by identification, we have: 

𝜑1 = 0                             𝜓1 = 1 

𝜑2 = 𝛼2𝑥2 + 𝛾2                  𝜓2 = 𝛽2 

𝜑3 = 𝑥2𝑥3. cot 𝑥1 + 𝛼3𝑥2 sin2 𝑥1 + 𝛾3𝑥3         𝜓3 = 𝛽3 sin 𝑥1 

0 < 𝑥1 <
𝜋

2
  

2.3. TERMINAL VOLTAGE   

 Since the terminal voltage of the synchronous generator 

does not appear in our system Eq. (1), we get it algebraically 

by the following direct relation [7]: 

𝑉𝑡 = [(
𝑥𝑠𝑃𝑒𝑐𝑜𝑡𝛿

𝑉𝑠
+

𝑥𝑑.𝑉𝑠

𝑥𝑑𝑠
)

2

+
(𝑥𝑠.𝑃𝑒)

𝑉𝑠
2

2

]

1 2⁄

                                 (3) 

 

III. CONTROL OBJECTIVES 

Control law objectives are describe as follows: 

• The power angle 𝛿 must converge to its reference value 

𝛿𝑟𝑒𝑓 define by equation Eq. (4). 
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• The relative speed 𝜔 of the synchronous generator must 

converge quickly towards zero. This means that rotor 

angular speed converges towards the synchronous angular 

speed. 

• The terminal voltage of the synchronous generator 𝑉𝑡 must 

converge quickly to the high power grid reference voltage 

𝑉𝑠 of 1 pu.  

These control objectives can be summarized as follows: 

lim
𝑡→+∞

[
𝛿
𝜔
𝑉𝑡

] = [

𝛿𝑟𝑒𝑓

0
𝑉𝑠

] 

with : 

𝛿𝑟𝑒𝑓 = arcot [
𝑉𝑠

𝑥𝑠𝑃𝑚
(−

𝑥𝑑𝑉𝑠

𝑥𝑑𝑠
+ √𝑉𝑠

2 −
𝑥𝑠

2𝑃𝑚
2

𝑉𝑠
2 )]           (4) 

The developed control law must reject electrical and 

mechanical disturbances as quickly as possible. 

IV. BACKSTEPPING CONTROLLER DESIGN 

Backstepping is a systematic and recursive method used to 

design nonlinear controllers using the second stability 

principle of LYAPUNOV. This technique was inspired by the 

research works of FEURER, MORSE [10] in the seventies and 

by KOKOTOVIĆ and SUSSMANN in the eighties. Works of 

KRSTIĆ, KOKOTOVIĆ and KANELLAKOPOULOS  [11, 12] made 

a great contribution to the development of this technique to a 

very large class of nonlinear systems. The block diagram in 

Fig. 2 illustrates the development of the backstepping control 

law for our nonlinear system. This method consists in 

designing a controller recursively by considering state 

variables as virtual controls. Then, we design some 

intermediate virtual control laws called stabilizing functions 

𝜎𝑖  (i = 1,2,3). This control strategy will have to achieve the 

objectives of stabilization and tracking of desired trajectory. 

For this purpose, at each step we designed control Lyapunov 

functions, called clf, including estimated states zi also called 

error variables: 𝑧1 = 𝑥1 − 𝛿𝑟𝑒𝑓, 𝑧2 = 𝑥2 − 𝜎1 and  𝑧3 = 𝑥3 −

𝜎2. Under the theorem of LASSALLE-YOSHIZAWA [13] these 

new coordinates zi obtained in the new state space converge 

asymptotically to zero - Fig 3a. 

 

 

Fig 2, Block diagram of backstepping controller system 

STEP 1 

Consider the following coordinate changes: 

𝑧1 = 𝑥1 − 𝑥1𝑟               (5) 

𝑧2 = 𝑥2 − 𝜎1                                                                         (6) 

with 𝑥1𝑟 = 𝛿𝑟𝑒𝑓 given by equation Eq. (4). 

We derivate equation Eq. (5): 

𝑧1̇ = 𝑥̇1 − 𝑥̇1𝑟 = 𝑥2        (𝑥̇1𝑟 = 0) 

From Eq. (6), we get the expression of 𝑥2 – first virtual 

control variable – and it is injected into 𝑧1̇, which gives: 

𝑧̇1 = 𝑧2 + 𝜎1 .                                                                       (7) 

Let us choose a first clf: 

 𝑉1 =
1

2
𝑧1

2 

The time derivative of 𝑉1 is: 

𝑉̇1 = 𝑧1. 𝑧̇1  

We inject Eq. (7) into the previous expression: 

𝑉̇1 = 𝑧1𝑧2 + 𝑧1. 𝜎1⏟
−𝑐1𝑧1

                                                            (8) 

We deduce the first stabilizing function 𝜎1: 

𝜎1 = −𝑐1𝑧1                                                                           (9) 

where 𝑐1 is a positive constant. 

Its time derivative, useful for the second step, is written: 

𝜎1̇ =  −𝑐1𝑥1̇ = −𝑐1𝑥2                                                        (10) 

CONCLUSION OF STEP 1 

Then the time derivative of 𝑉1 becomes: 

𝑉1̇ = −𝑐1𝑧1
2 + 𝑧1𝑧2  .                                                          (11) 

Clearly, if 𝑧2 = 0, then 𝑉1̇ =  −𝑐1𝑧1
2 and 𝑧1is guaranteed to     

converge toward zero asymptotically. 

 

STEP 2 

Consider the following coordinate changes: 

𝑧3 = 𝑥3 − 𝜎2 .                         (12) 

The time derivative of Eq. (6) is: 

𝑧2̇ = 𝑥2̇ − 𝜎1̇ .             

In the previous equation we inject the second equation of our 

nonlinear system Eq. (1) and Eq. (10): 

𝑧2̇ = 𝛼2𝑥2 + 𝛽2𝑥3 + 𝛾2 + 𝑐1𝑥2             

From Eq. (12) we get the expression of 𝑥3 – second virtual 

control variable – and it is injected into 𝑧2̇, which gives: 

𝑧2̇ = (𝛼2 + 𝑐1)𝑥2 + 𝛽2𝑧3 + 𝛽2𝜎2 + 𝛾2                              (13) 
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Let us choose a second clf of the form: 

𝑉2 = 𝑉1 +
1

2
𝑧2

2 . 

The time derivative of 𝑉2 is: 

𝑉2̇ = 𝑉1̇ + 𝑧2. 𝑧2̇ . 

We inject Eq. (13) and Eq. (11) into the previous expression: 

𝑉2̇ = −𝑐1𝑧2
2 + 𝛽2𝑧2𝑧3 + 𝑧2[𝑧1 + (𝛼2 + 𝑐1)𝑥2 + 𝛽2𝜎2 + 𝛾2] 

             (14) 

with  [𝑧1 + (𝛼2 + 𝑐1)𝑥2 + 𝛽2𝜎2 + 𝛾2] = −𝑐2𝑧2 . 

We deduce the second stabilizing function 𝜎2: 

𝜎2 = −
𝑐2

𝛽2
𝑧2 −

1

𝛽2
𝑧1 −

𝛼2+𝑐1

𝛽2
𝑥2 −

𝛾2

𝛽2
 . 

Substituting 𝛼2, 𝛽2 and 𝛾2 by their expressions we have: 

𝜎2 =  
𝑀

𝜔𝑠
[𝑐2𝑧2 + 𝑧1 − (𝑐1 −

𝐷

𝑀
) 𝑥2] + 𝑃𝑚                          (15) 

where 𝑐2 is positive constant. 

Its derivative, useful for the third and last step, is written: 

𝜎2̇ =
𝜕𝜎2

𝜕𝑥1
𝑥1̇ +

𝜕𝜎2

𝜕𝑥2
𝑥2̇  

  = 
𝑀

𝜔𝑠
[(1 + 𝑐1𝑐2)𝑥2 + (𝑐1 + 𝑐2 −

𝐷

𝑀
)𝑥2]̇                         (16) 

where 𝑥2̇ is the second equation of our nonlinear system Eq. 

(1). 

CONCLUSION OF STEP 2 

Then the time derivative of 𝑉2 becomes: 

𝑉2̇ = −𝑐1𝑧1
2 − 𝑐2𝑧2

2 + 𝛽2𝑧2𝑧3 = − ∑ 𝑐𝑖𝑧𝑖
22

𝑖=1 + 𝛽2𝑧2𝑧3  

                         (17) 

Clearly, if 𝑧3 = 0, we have 𝑉2̇ = − ∑ 𝑐𝑖𝑧𝑖
22

𝑖=1 , and thus both 

𝑧1 and 𝑧2 are guaranteed to converge to zero asymptotically. 

 

STEP 3 

In this step we will determine the control law 𝑢. 

We derivate the error dynamic 𝑧3 Eq. (12): 

𝑧3̇ = 𝑥3̇ − 𝜎2̇ .              (18) 

In the previous equation we inject the third equation of our 

nonlinear system Eq. (2) in which 𝑢 appears: 

𝑧3̇ = 𝜑3(𝑥) + 𝜓3(𝑥)𝑢 − 𝜎2̇               (19) 

Let us choose a third clf of the form: 

𝑉3 = 𝑉2 +
1

2
𝑧3

2 . 

The time derivative of 𝑉3 is: 

𝑉3̇ = 𝑉2̇ + 𝑧3. 𝑧3̇ . 

We inject Eq. (19) and Eq. (17) in the previous expression: 

𝑉3̇ = − ∑ 𝑐𝑖𝑧𝑖
2 + 𝑧3[𝛽2𝑧2 + 𝜑3(𝑥) + 𝜓3𝑢 − 𝜎2̇

2
𝑖=1 ]        (20) 

with  [𝛽2𝑧2 + 𝜑3(𝑥) + 𝜓3𝑢 − 𝜎2̇] =  −𝑐2𝑧2 

We are able to design the control law 𝑢 ensuring 𝑉3̇ ≤ 0. 

𝑢 =
−𝑐3𝑧3−𝛽2𝑧2−𝜑3(𝑥)+𝜎2̇

𝜓3(𝑥)
                   𝜓3(𝑥) > 0 

where 𝑐3 is positive constant. Substituting 𝛽2 and 𝛽3 by their 

expression we have: 

𝑢 = 𝑇′
𝑑𝑜

𝑥′
𝑑𝑠

𝑉𝑠

−𝑐3𝑧3+
𝜔𝑠
𝑀

𝑧2−𝜑3(𝑥)+𝜎2̇

sin 𝑥1
     0 < 𝑥1 <

𝜋

2
               (21) 

𝜎̇2 is given by equation Eq. (16). Positives constant 𝑐𝑖  is 

the tuning parameters of the nonlinear controller and 𝜑3(𝑥) is 

the nonlinear function resulting from the third equation of the 

nonlinear system Eq. (2). 

CONCLUSION OF STEP 3 

So, the time derivate of 𝑉3 becomes: 

𝑉3̇ = − ∑ 𝑐𝑖𝑧𝑖
2

3

𝑖=1

≤ 0 

CONCLUSION 

The stability criterion of LYAPUNOV leads to 

lim
𝑡→∞

(𝑧1, 𝑧2, 𝑧3) → 0 – Fig 3a. This results in, 𝑥1 = 𝛿 → 𝛿𝑟𝑒𝑓, 

𝑥2 = 𝜔 → 0 and 𝑥1 = 𝑃𝑒 → 𝑃𝑚. This last convergence 

implies the convergence of 𝑉𝑡 toward 𝑉𝑠. Then we have just 

shown that the control law satisfies the convergence 

objectives given in the Section III. 

 

V. SIMULATION RESULTS 

 Generator dynamics connected to the high power grid was 

simulated using MATLAB®R2016b with Simulink® 

environment. 

5.1.TUNING PARAMETERS  

    We performed the simulations with synchronous generator 

parameters given in [3-5]. Controllers tuning parameters are 

given in Table 2. 

TABLE 2, CONTROLLERS TUNING PARAMETERS  

Backstepping AVR-PSS 

 

𝑐1 = 1  

𝑐2 = 10  

𝑐3 = 0.5  

𝐾𝐴 = 500  

𝐾𝑃𝑆𝑆 = 0.5  

𝑇𝑊 = 10𝑠   
𝑇1 = 0.2𝑠  

𝑇2 = 0.1𝑠  

𝑇𝑅 = 0  

 

5.2. ROBUSTNESS TEST 

Our system will be tested by the following robustness test: 

combination of a short circuit on the transmission line lasting 

500 ms occurring at 40 s after generator start-up and a 
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permanent drop of the mechanical power of 50% of its 

nominal value occurring 80 s after the start of the generator. 

5.3. DISCUSSION 

Temporal responses show that the implemented nonlinear 

regulator, called BCKSTP, gives satisfactory results. The 

AVR-PSS linear regulator ensures a good tracking of the 

reference trajectories. However, with the linear regulator, 

transient overrun appears in the dynamic of the power angle - 

Fig. 3c- while with the nonlinear regulator we can easily 

damp this transient overrun and improve the quickness of the 

dynamics of 𝛿 by playing on the parameter 𝑐𝑖 . We note that 

during the short circuit, playing on these same parameters – 

Fig. 3e and Fig. 3f – can reduce the peaks of voltages and 

powers in transient state. After a mechanical power drop, the 

power angle does not return to its reference value since 𝛿𝑟𝑒𝑓 

depends on 𝑃𝑚 in the expression Eq. (4) – Fig. 3c. The 

equilibrium point of the power angle has changed but remains 

stable because 0 < 𝛿 <
𝜋

2
. Hence, the generator will not be 

subject to stall phenomena and the network will remain 

stable. We can see that the dynamics of 𝜔 regulated by our 

nonlinear controller reject the mechanical disturbance more 

quickly than the AVR-PSS regulator – Fig. 3d. The major 

disadvantage of the AVR-PSS is that the power has transient 

overrun and a peak overshoot during the short circuit – Fig. 

3e. The control voltage of the BCKSTP regulator is smoother 

compared to the AVR-PSS signal – Fig. 3b. Indeed, a too 

high value of the gain of the voltage regulator 𝐾𝐴 of the 

AVR-PSS regulator needed to obtain the convergence of 𝑉𝑡 

toward 𝑉𝑠 degrades the control signal while the BCKSTP 

regulator does not have this disadvantage.  

VI. CONCLUSION AND PERSPECTIVES 

In this paper, a nonlinear backstepping control has been 

developed for synchronous generator excitation driven by 

tidal stream turbine. This proposed nonlinear controller 

regulates simultaneously terminal voltage and frequency 

making possible direct connection to electrical grid. 

Numerical results show a better convergence, reliability, 

transient stability and robustness compared to AVR-PSS. 

Indeed, the nonlinear controller designed with nonlinear 

equations system avoids a degradation of dynamics in 

transient and steady states with respect to a classical linear 

regulator. Soon, our research will focus on simulations and 

implementations of robust nonlinear controllers in 

multimachine configuration in order to anticipate tidal stream 

generators production parks development. 

 

 

Fig 3a, Errors variables 

 

 

Fig 3b, Control signal 

 

 

Fig 3c, Rotor angle 

 

 
Fig 3d, Relative angular speed 

 

 
Fig 3e, Active electrical power  

 

 

Fig 3d, Terminal voltage 
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