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 Abstract - A mathematical model is formulated in this work to 

determine the drilling mud loss in a natural fracture intersected 

by a wellbore. The formulation is based on a PKN fracture 

geometry model, assuming the natural fracture intersects the 

wellbore with the fracture plane more or less parallel to the 

wellbore axis. The drilling mud is treated as a single-phase fluid. 

The rheology of the drilling mud is assumed to be non-Newtonian 

of Herschel-Buckley type. The reservoir formation is assumed to 

be permeable with the leak off following Carter’s model. Fluid 

flow along the fracture is considered as one-dimensional 

lubrication flow. Deformation of the fracture is governed by local 

elasticity and the wellbore pressure and the pore pressure in the 

reservoir are assumed to be constant. The problem defined above 

is solved numerically using an explicit moving mesh algorithm. 

Effects of the yield stress and the overbalance pressure on the 

drilling mud loss are evaluated. 

 Keywords – drilling mud loss, PKN fracture model, natural 

fracture 

 摘要 – 天然裂缝性地层容易出现严重的井漏。在过平衡钻

井时，大量钻井液的漏失不仅影响钻井操作，而且还会对随后

的完井及油藏的生产产生不良影响。为了能够合理地采取措施

减少井漏，我们迫切需要对钻井液在天然裂缝的漏失进行定量

预测。本文将建立一个基于PKN裂缝几何形状的数学模型对天

然裂缝中钻井液的漏失进行模拟计算。我们假设天然裂缝与井

筒相交，裂缝平面大致平行于井孔轴。钻井液将被视为单相流

体。钻井液的流变特性采用非牛顿流体的赫谢尔-巴克利模型。

钻井液在地层中的渗透将由卡特模型来描述, 在裂隙中的流动是

一维的，可以由流体润滑方程来描述。地层的变形假设是局部

弹性的。井中压力和油藏孔隙压力假设是常值。 显式移动网格

算法将被用于求解上述问题。本文将对流变参数和过平衡压力

对钻井液漏失的影响进行评估。 

 关键词 – 钻井液漏失, PKN裂缝模型, 天然裂缝 

I. INTRODUCTION 

 Naturally fractured reservoirs are prone to severe circulation 

losses. In overbalance drilling, since the wellbore pressure is 

larger than the reservoir pore pressure, large volume loss of the 

drilling mud in fractured formations could be a significant 

problem not only in the drilling operation but also during 

subsequent well completion and reservoir production. 

Quantitative prediction of the drilling mud loss is therefore 

critically needed for the control of lost circulation.  In 

general, drilling mud may be treated as a single-phase 

incompressible fluid displaying non-Newtonian rheological 

characteristics such as yield stress and shear thinning. The 

yield stress is the most critical rheological element responsible 

for the eventual cessation of mud invasion. Loss of the drilling 

mud in the natural fracture is driven by the pressure drop 

between the wellbore and the reservoir. The pressure gradient 

near the wellbore is the largest at the onset of drilling mud 

invasion and decreases as the mud flows further into the 

fracture. For a yield stress fluid, when the pressure gradient 

falls below a threshold, mud invasion ceases and the fracture 

can be considered sealed. The Herschel-Buckley model with a 

yield stress and power law for shear thinning has been 

considered an accurate description for the drilling mud 

rheology, especially in the low shear rate range [1]. 

 Drilling mud loss in a natural fracture has been previously 

modeled in the literature assuming radial flow through two 

parallel disks with or without the consideration of reservoir 

deformation, e.g. [2][3]. The assumption of radial flow is most 

applicable when the natural fracture is nearly perpendicular to 

the wellbore axis.  

 In this work, a mathematical model is formulated to 

determine the drilling mud loss for the scenario when the 

natural fracture intersects the wellbore with the fracture plane 

aligned more or less parallel to the wellbore axis. The natural 

fracture is initially closed. Fluid flow inside the fracture is 

coupled with the mechanical deformation of the permeable 

reservoir. The fracture opening developed as a result of mud 

invasion is assumed to be elliptical with a constant height, 

following the Perkins-Kern-Nordgen (PKN) geometry model 

[4][5]. 

 An explicit moving mesh algorithm modified from those for 

solving the PKN hydraulic fracturing model for power law [6] 

and piecewise power law rheology [7] is employed in this 

study. The mathematical formulation and the numerical 

implementation are first presented. Effects of the yield stress 
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and the overbalance pressure on the drilling mud loss are then 

analyzed. 

II. MATHEMATICAL FORMULATION 

 Schematic of a PKN geometry model of length 𝐿 and height 

𝐻 is shown in Fig. 1. A key assumption in the PKN hydraulic 

fracture model is that the elastic response of the rock is local, 

namely, the opening of the hydraulic fracture at a given 

position 𝑥 depends on the local overpressure only, but not on 

the pressure everywhere else inside the fracture, i.e., 

𝑝 =
𝑤

𝑀𝑐
 (1) 

Eq. (1) states that the average fracture width 𝑤  of a cross 

section is related to the net local pressure 𝑝  through the 

fracture compliance 𝑀𝑐 = 𝜋(1 − 𝜈)𝐻/4𝐺, where 𝐺 and 𝜈 are 

the shear modulus and the Poisson’s ratio of the rock, 

respectively. The net pressure 𝑝, i.e., the overpressure above 

the reservoir stress, is assumed to vary only along the 𝑥 −axis, 

namely, the direction of fracture propagation, and is uniform 

at a given cross section. The average width is defined 

according to 𝑤 = 𝐴/𝐻, where 𝐴 is the cross sectional area. 

For an elliptical cross section, if the width at the mid-height is 

𝑤0 (see Fig. 1), 𝑤 = 𝜋𝑤0/4. The local elasticity assumption 

implies each cross section is deforming independently under 

the condition of plane strain, which is most applicable when 

the fracture length is much larger than the fracture height and 

the fracture width is much smaller than the height [8]. The 

local elasticity assumption relieves us of solving the integral 

form pressure-width relation required in other hydraulic 

fracture geometry models such as the KGD [9][10] and the 

penny-shaped fracture models [11]. The PKN hydraulic 

fracture model therefore offers unique simplicity that allows 

incorporation of complex fluid rheology. 

 

 

Fig. 1, A PKN fracture of length 𝐿 and height 𝐻; at a given cross 

section, the fracture width at the mid-height is denoted as 𝑤0. 

 

 We may assume that fluid flow along the fracture is one-

dimensional. Consequently, the local continuity equation can 

be written as, 

𝜕𝑞𝑥
𝜕𝑥

+
𝜕𝑤

𝜕𝑡
+ 𝑢 = 0 (2) 

where 𝑞𝑥 is the flow rate per unit height of a cross section; 𝑡 is 

the elapsed time from the onset of drilling mud invasion and 𝑢 

is the fluid leak off velocity from the fracture faces. For a 

relatively low permeability formation, fluid leak off may be 

assumed to be one-dimensional obeying Carter’s leak off 

model, 

𝑢 =
2𝐶𝐿

√𝑡 − 𝑡𝑎(𝑥) 
 (3) 

where 𝐶𝐿 is the leak off coefficient and 𝑡𝑎(𝑥) is the fracture tip 

arrival time at location x. Carter's leak off model, Eq. (3), 

relates the leak off velocity 𝑢 to the time of exposure for a 

given position. The velocity 𝑢 accounts for the leak off from 

both sides of the fracture faces. 

 Fluid rheology is only involved in the equation of balance 

of fluid momentum for the PKN hydraulic fracture model. 

With the assumption of one dimensional lubrication flow, the 

equation of balance of momentum can be approximated by 

integrating the Poiseuille slot flow solution over the height of 

the elliptical cross section. The slot flow solution for a 

Herschel-Buckley fluid therefore needs to be derived first. 

 For a Herschel-Buckley fluid, the relationship between the 

shear stress and the shear strain rate can be expressed as, 

𝜏 = {
𝜏0 𝛾̇ = 0

𝜏0 + 𝐾𝛾̇
𝑛 𝛾̇ > 0

 (4) 

where 𝜏0 , 𝐾  and 𝑛  are the yield stress, the consistency 

parameter and the power index. Fluid flow occurs only if the 

shear stress 𝜏 exceeds the yield stress 𝜏0. 

 After combining the rheology model with the equilibrium 

equation, the geometrical equation, and the no-slip condition 

at the slot walls, the steady state velocity profile for slot flow 

can be readily obtained, 

𝑉𝑥 =

{
  
 

  
 𝑏𝑛 (

𝑝̅𝑏
𝐾
)

1
𝑛

1 + 𝑛
[(1 − 𝑠∗)

1+
1
𝑛 − (|𝑠| − 𝑠∗)

1+
1
𝑛] |𝑠| > 𝑠∗

𝑏𝑛 (
𝑝̅𝑏
𝐾
)

1
𝑛

1 + 𝑛
(1 − 𝑠∗)

1+
1
𝑛 |𝑠| ≤ 𝑠∗

 

(5) 
where 𝑉𝑥 is the fluid flow velocity in the flow direction; 𝑏 is 

the half width of the slot; 𝑠 = 𝑦/𝑏 is the scaled coordinate 

(−1 ≤ 𝑠 ≤ 1) in the slot width direction and 𝑝̅ = |𝑑𝑝/𝑑𝑥| is 

the magnitude of the pressure gradient in the fluid flow 

direction. Due to the existence of the yield stress, within the 

region of |𝑠| ≤ 𝑠∗, the velocity is constant and fluid flows in a 

plug form. The critical pressure gradient to initiate fluid flow 

is 𝑝̅𝑐 = 𝜏0/𝑏 and the half width 𝑠∗ of the plug flow region can 

be determined from 𝑠∗ = 𝜏0𝑏/𝑝̅. 

 The total flow rate 𝑄𝑥
s  at a given pressure gradient 𝑝̅ for slot 

flow can be obtained by integrating the velocity across the slot 

width, 

𝑄𝑥
s =

2𝑏2+
1
𝑛 (
𝑝̅
𝐾
)

1
𝑛

1 +
1
𝑛

(1 − 𝑠∗)
1+
1
𝑛 (
𝑛 + 1 + 𝑠∗
2𝑛 + 1

) (6) 

 Fig. 2 shows the variation of the velocity profiles with 

respect to the applied pressure gradient 𝑝̅ = 0.05, 0.1 and 0.2 

MPa/m for the following rheological parameters: 𝜏0 = 10 Pa, 

𝑛 = 0.7, and 𝐾 = 0.3 Pa∙sn. As can be seen from Fig. 2, the 

plug zone size reduces as the pressure gradient 𝑝̅ increases. 

The pressure gradient and the flow rate relationship as shown 
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in Fig. 3 indicates that the flow rate is zero before the yield 

stress is overcome by the pressure gradient along the slot. 

 

 

Fig. 2, Velocity profiles under different pressure gradients; the red 

lines denote the plug flow zones. 

 

 

 

Fig. 3, Variation of the pressure gradient with respect to the total flow 

rate for slot flow. 

 

 

Fig. 4, A PKN model cross section for a Herschel-Buckley fluid. 

 

 With the assumption of one-dimensional lubrication flow 

inside the fracture, the existence of the yield stress is 

manifested through the stagnation zones near the two ends of 

the fracture cross section, as shown in the shaded areas in Fig. 

4. The ratio between the height 𝐻∗ of the moving fluid region 

and the total height 𝐻 can be determined from, 

𝐻∗
𝐻
= √1 − (

2𝜏0
𝑝̅𝑤0

)
2

 (7) 

At a given height position, the local flow rate 𝑄𝑥  can be 

obtained based on the slot flow solution, Eq. (6), 
𝑄𝑥

=

{
 
 

 
 2(

𝑤𝑦
2 )

2+
1
𝑛
(
𝑝̅
𝐾)

1
𝑛

1 +
1
𝑛

(1 − 𝑠∗)
1+
1
𝑛 (
𝑛 + 1 + 𝑠∗
2𝑛 + 1

) |𝑦| <
𝐻∗
2

0
𝐻∗
2
≤ |𝑦| <

𝐻

2

 

(8) 

where 𝑤𝑦  is the fracture width at a given height 𝑦 , 𝑤𝑦 =

𝑤0√1 − (2𝑦/𝐻)
2 . 

 The balance of momentum equation relating the total flow 

rate or the mud loss rate per unit height 𝑞𝑥 to the local pressure 

gradient 𝑝̅  can be obtained by integrating Eq. (8) over the 

fracture height, 

𝑞𝑥 =
𝐶1
𝑝̅2
[𝑀1 −

1

3
(
𝐻∗
𝐻
)
2

𝑀2] [(
𝑤0
2
) 𝑝̅ − 𝜏0]

1+1/𝑛

[(1 +
1

𝑛
) (
𝑤0
2
) 𝑝̅ + 𝜏0]

 (9) 

where, 

𝐶1 =
2

(1 +
1
𝑛
) (2 +

1
𝑛
)𝐾

1
𝑛

(
𝐻∗
𝐻
)

𝑀1 = 𝐹2 1 [
1

2
, −

1

2𝑛
,
3

2
, (
𝐻∗
𝐻
)
2

] 

𝑀2 = 𝐹2 1 [
3

2
, −

1

2𝑛
,
5

2
, (
𝐻∗
𝐻
)
2

]

 (10) 

where 𝐹2 1[ ] denotes the hypergeometric function. 

 To complete the formulation, boundary conditions both at 

the wellbore and at the fracture tip need to be supplied. We 

may assume that the wellbore overpressure Pin is constant and 

the initial reservoir pore pressure and the reservoir stress are 

both constant, which serve only as references. In addition, no 

flow condition can be imposed at the fracture tip 𝑥 = 𝐿, i.e.,  

𝑝 = 𝑃in at  𝑥 = 0
𝑤 = 0,  𝑞𝑥 = 0 at  𝑥 = 𝐿

 (11) 

III. NUMERICAL IMPLEMENTATION 

 The system of governing equations, Eqs. (1) – (3) and Eq. 

(9), is first transformed by introducing a moving coordinate 

𝜃 = 𝑥/𝐿(𝑡), 𝜃 ∈ [0, 1]. An equation for the fracture width can 

be obtained as follows, 

𝑤̇0 =
𝜃𝐿̇

𝐿

𝜕𝑤0
𝜕𝜃

+ 𝑐𝑤
𝜕2𝑤0
𝜕𝜃2

+ 𝑐𝑠 (
𝜕𝑤0
𝜕𝜃

)
2

 (12) 

where ( ̇ ) = 𝑑( )/𝑑𝑡 is the material time derivative and 𝑐𝑤 

and 𝑐𝑠 are functions of the material parameters and the fracture 

width 𝑤0 and the gradient 𝜕𝑤0/𝜕𝜃. For brevity, expressions 

for 𝑐𝑤 and 𝑐𝑠 are omitted here. 

 Such a “diffusion-type” of equation for the width 𝑤0 can be 

solved by using an explicit finite-difference scheme [6]. After 
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discretizing the fracture length into 𝑁 nodes, at a given time 

step, say, 𝑡 = 𝑡𝑘+1, the critical time step to ensure numerical 

stability can be computed from, 

∆𝑡𝑐
𝑘+1 = min [

∆𝜃𝑖
2

2(𝑐𝑤)𝑖
𝑘] ;   𝑖 = 1,⋯ ,𝑁 − 1 (13) 

Here the nodal number is denoted by the subscript 𝑖 and the 

time step is denoted by the superscript 𝑘 for simplicity, e.g., 

(𝑐𝑤)𝑖
𝑘 = 𝑐𝑤(𝜃𝑖 , 𝑡

𝑘) . In the time-stepping algorithm, after 

knowing all the nodal quantities in the previous time step, a 

critical time step is first chosen. The fracture width 𝑤, the net 

fluid pressure 𝑝 in the fracture, the local flow rate 𝑞𝑥, the leak 

off velocity 𝑢 , and the fracture length 𝐿 , are computed 

sequentially. 

 Since the numerical scheme is explicit, an initial guess is 

required to start the calculation. The analytical solution for the 

PKN model in an impermeable formation with a power law 

fluid [12] is used as the initial guess for the fracture length, 

width and the flow rate at an arbitrarily small starting time. As 

shown in [7], with the proper choice of the critical time step, 

the numerical scheme is robust and the solutions are not 

sensitive to the initial guesses obtained from different 

rheology. 

IV. NUMERICAL RESULTS 

 Effects of the yield stress and the overbalance pressure on 

the drilling mud loss behaviors are investigated using the set 

of input parameters as listed in Table I.  

TABLE I, INPUT PARAMETERS FOR THE SIMULATION CASES 

Consistence parameter, 𝐾 0.3 Pa⋅s0.7 

Power law index, 𝑛 0.7 

Poisson’s ratio, 𝜈 0.2 

Shear modulus, 𝐺 10 GPa 

Fracture height, 𝐻 10 m 

Leak-off coefficient, 𝐶𝐿 6.3 × 10−5 m/s1/2 

 

 
Fig. 5, Fracture length as a function of time from the simulation cases 

with a power law fluid and a Herschel-Buckley fluid (𝜏0 = 100 Pa) 

with an overpressure 𝑃in = 10 MPa. 

  

 Variations of the fracture length or the mud invasion length 

with time for a power law fluid and a Herschel-Buckley fluid 

are compared in Fig. 5. The two cases have the same power 

law parameters and the wellbore overpressure is 𝑃in =

10 MPa. The yield stress for the Herschel-Buckley fluid is 

𝜏0 = 100 Pa. The Herschel-Buckley solution coincides with 

the power-law solution at early time, but gradually deviates 

from the power law solution at late time. This means that fluid 

flow is governed by the high shear rate rheology at early time, 

but by the low shear rate rheology at late time. Eventually, the 

Herschel-Buckley solution reaches a plateau, indicating that 

the fracture is no longer propagating. In other words, there is 

no further mud invasion into the fracture. Meanwhile, for the 

power law case, the absence of the yield stress results in 

continuous fracture growth and the fracture cannot be sealed. 

 Evolution of the fracture half-width is plotted against the 

fracture length at different times for a case with 𝜏0 = 10 Pa 
and 𝑃in = 5 MPa . Since the fracture width at the inlet is 

governed by the inlet pressure and the fracture compliance, it 

remains constant as the fracture propagates. Meanwhile, the 

gradient of the fracture width, and thus the pressure gradient, 

decreases and the rate of increase in the fracture length or the 

mud invasion length decreases with time. 

 

 
Fig. 6, Evolution of the fracture width profile with time with 𝑃in =
5 MPa  and 𝜏0 = 10  Pa, and 𝑡1 = 506.6  s, 𝑡2 = 8.558𝑒4  s, 𝑡3 =
4.709𝑒5 s, 𝑡4 = 9.949𝑒5 s, 𝑡5 = 1.608𝑒6 s. 

 

 
Fig. 7, Evolution of the inlet flow rate per unit height 𝑞0 with time 𝑡; 
the case numbers refer to the yield stress in Pa and the overpressure 

in MPa; namely, case 10-1 is a test case with 𝜏0 = 10 Pa and 𝑃in =
1 MPa. 

 

 A series of simulations are conducted by varying the yield 

stress and the inlet overpressure, 𝜏0 = 1 , 10 , 100  Pa and 
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𝑃in = 1, 5, 10 MPa, to investigate their influences on the mud 

loss rate at the inlet 𝑞0  (per unit height) and the fracturing 

efficiency 𝜂. The fracturing efficiency is defined according to 

𝜂 = (𝑉 − 𝑉ℓ)/𝑉, where 𝑉 is the total volume of mud loss and 

𝑉ℓ  is the volume of fluid leaked into the formation. The 

efficiency measures the percent of fluid volume stored inside 

the fracture. Though, in the range of parameters explored, the 

drilling mud loss behavior is predominantly affected by the 

prescribed inlet pressure, increasing the yield stress to 𝜏0 =
100 Pa has a considerable effect on the mud loss rate. As can 

be seen from Fig. 7, the mud loss rate for 𝜏0 = 100 Pa and 

𝑃in = 10 MPa indeed becomes smaller than that in the cases 

with 𝜏0 = 1 and 10 Pa and 𝑃in = 5 MPa at late time. 

 As shown in Fig. 8, the fracturing efficiency decreases with 

time, suggesting that at the early stage, a higher percentage of 

the drill mud loss is in opening up the natural fracture. Matrix 

leak off becomes relatively important only at the later stage. 

 

 
Fig. 8, Variation of the fracturing efficiency 𝜂 with time 𝑡; the case 

numbers refer to the yield stress in Pa and the overpressure in MPa; 

namely, case 10-1 is a test case with 𝜏0 = 1 Pa and 𝑃in = 1 MPa. 

 

V. CONCLUSION 

 In this paper, a mathematical model for predicting drilling 

mud loss in a natural fracture is developed based on the 

classical PKN hydraulic fracture geometry model. Rheology 

of the drilling mud is assumed to be non-Newtonian of 

Herschel-Buckley type. The numerical scheme using an 

explicit moving mesh algorithm provides a robust tool that 

allows not only systematic investigation of the effects of the 

formation and the fluid characteristics on the drilling mud loss, 

but also improvement in the fluid design to control lost 

circulation. 
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